Abstract
The vacuum ultraviolet (VUV) process, which can directly produce hydroxyl radical from water, is considered to be a promising oxidation process in degrading contaminants of emerging concern, because of no need for extra reagents. In this study, the influencing factors and mechanism for degradation of diethyl phthalate (DEP) by the VUV process were investigated. The effects of irradiation intensity, inorganic anions, natural organic matter (NOM), and H2O2 dosage on the performance of VUV process were evaluated. The results showed that DEP could be more efficiently degraded by the VUV process compared with ultraviolet (UV)-254-nm irradiation. The presence of HCO3−, NO3− and NOM in the aqueous solutions inhibited the degradation of DEP to a different degree, mainly by competing hydroxyl radicals (HO•) with DEP. Degradation rate and removal efficiency of DEP by VUV process significantly enhanced with the addition of H2O2, while excess H2O2 dosage could inhibit the DEP degradation. Moreover, based on the identified seven oxidation byproducts and their time-dependent evolution profiles, a possible pathway for DEP degradation during the VUV process was proposed. Finally, the ecotoxicity of DEP and its oxidation byproducts reduced overall according to the calculated results from Ecological Structure Activity Relationships (ECOSAR) program. The electrical energy per order (EE/O) was also assessed to analysis the energy cost of the DEP degradation in the VUV process. Our work showed the VUV process could be an alternative and environmental friendly technology for removing contaminants in water.
from Energy Ecology Environment Ambio via Terpsi Hori on Inoreader http://bit.ly/2RqiGvL
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,