Αρχειοθήκη ιστολογίου

Τετάρτη 6 Σεπτεμβρίου 2017

An Accurate PSO-GA Based Neural Network to Model Growth of Carbon Nanotubes

By combining particle swarm optimization (PSO) and genetic algorithms (GA) this paper offers an innovative algorithm to train artificial neural networks (ANNs) for the purpose of calculating the experimental growth parameters of CNTs. The paper explores experimentally obtaining data to train ANNs, as a method to reduce simulation time while ensuring the precision of formal physics models. The results are compared with conventional particle swarm optimization based neural network (CPSONN) and Levenberg–Marquardt (LM) techniques. The results show that PSOGANN can be successfully utilized for modeling the experimental parameters that are critical for the growth of CNTs.

from # All Medicine by Alexandros G. Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2wGwNQI
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,

Αναζήτηση αυτού του ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader