Publication date: Available online 7 October 2017
Source:Experimental Cell Research
Author(s): Diana Huelter-Hassler, Martin Wein, Simon D. Schulz, Susanne Proksch, Thorsten Steinberg, Britta A. Jung, Pascal Tomakidi
Biomechanical strain induces activation of the transcriptional co-activator yes-associated protein (YAP) by nuclear re-distribution. Recent findings indicate that the mechanically responsive mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK) 1/2 is involved in the amount of nuclear YAP, reflecting its activation. In this context, we conducted experiments to detect how biomechanical strain acts on the subcellular localization of YAP in periodontal cells. To this end, cells were subjected to 2.5% static equiaxial strain for different time periods. Western blot and fluorescence imaging-based analyses revealed a clear modulation of nuclear YAP localization. This modulation fairly coincided with the altered course of the KI-67 protein amount in conjunction with the percentage of KI-67-positive and thus proliferating cells. The inhibition of the ERK1/2 activity via U0126 yielded an unchanged strain-related modulation of nuclear YAP localization, while YAP amount in whole cell extracts of strained cells was decreased. Administration of the YAP-inhibiting drug Verteporfin evoked a clear reduction of KI-67-positive and thus proliferating cells by approximately 65%, irrespective of strain. Our data reveal YAP as a regulator of strain-modulated proliferation which occurs in a MAPK-independent fashion.
Graphical abstract
from # All Medicine by Alexandros G. Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2yQHPTa
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,