Αρχειοθήκη ιστολογίου

Δευτέρα 11 Φεβρουαρίου 2019

Experimental characterization of multi-nozzle atomization interference for dust reduction between hydraulic supports at a fully mechanized coal mining face

Abstract

To analyze the distribution pattern concerning multi-nozzle interference spray particle granularity between hydraulic supports, the present study conducts atomization interference experimental characterization for three types of nozzles used in coal mines based on a Doppler laser interference spray dust suppression simulation experimental system. The results indicate that for single-nozzle atomization, the impact of spray pressure on spray droplet size is gradually subdued, and a spray pressure of 8 MPa yields the best result; compared with single-nozzle spray, the multi-nozzle atomization interference effect can downsize the spray field overlapping zone, leading to an improved uniformity of overall spray particle distribution. As the spray field overlapping coefficient k increases, the particle size of the interference spray field decreases first and then increases. As the spray field overlapping coefficient reaches 0.4, the distribution of spray droplet size is most concentrated, corresponding to the optimal atomized dust suppression effect. Practical testing indicates that the optimal spray field overlapping coefficient measured at a fully mechanized mining face agrees well with the experimental result. Under the optimal parameters, the average total dust and respirable dust suppression rates measured at various measuring points on the downwind side during support relocation reach 78.93% and 80.53%, respectively.



from Energy Ecology Environment Ambio via Terpsi Hori on Inoreader http://bit.ly/2BuRWRs

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,

Αναζήτηση αυτού του ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader