Αρχειοθήκη ιστολογίου

Κυριακή 23 Δεκεμβρίου 2018

Potential of piperine in modulation of voltage-gated K+ current and its influences on cell cycle arrest and apoptosis in human prostate cancer cells.

Related Articles

Potential of piperine in modulation of voltage-gated K+ current and its influences on cell cycle arrest and apoptosis in human prostate cancer cells.

Eur Rev Med Pharmacol Sci. 2018 Dec;22(24):8999-9011

Authors: Ba Y, Malhotra A

Abstract
OBJECTIVE: Piperine is an attractive therapeutic alkaloid from black pepper that exhibits a broad spectrum of pharmacological properties over various pathological disorders including cancer. Voltage-gated K+ channels (KV) play an important role in regulating cancer cell proliferation and are considered as potential targets for the treatment of cancer. However, there is a paucity of information with regard to the implication of piperine in KV associated anticancer activities on human prostate cancer cells LNCaP and PC-3 cells. Therefore, the primary objective of the present study was to elucidate the anticancer action of piperine that might be mediated via voltage-gated K+ current (IK) blockade.
PATIENTS AND METHODS: Whole-cell patch clamp was used to record the modulatory effects of piperine on IK expressed in LNCaP and PC-3 cells. Moreover, the anticancer activity of piperine was evaluated by MTT assay, flow cytometry and live/dead assay.
RESULTS: Piperine significantly inhibited IK in a dose-dependent manner with an effective IC50 dose 39.91 µM in LNCaP and 49.45 µM in PC-3 cells. Also, piperine induced a positive shift in the relative activation curve in both cells. Blockade of IK by piperine exerted G0/G1 phase cell cycle arrest that led to inhibition of cell proliferation and induced apoptosis in a dose-dependent manner.
CONCLUSIONS: We showed that the anticancer effects of piperine are directly correlated with the blockade of IK in LNCaP and PC-3 cells. The study also confirmed that IK inhibition by piperine might be responsible for its anticancer activities in prostate cancer cells.

PMID: 30575945 [PubMed - in process]



from A via a.sfakia on Inoreader http://bit.ly/2Rgblyy

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,

Αναζήτηση αυτού του ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader