Αρχειοθήκη ιστολογίου

Πέμπτη 26 Οκτωβρίου 2017

Generation of recombinant affinity reagents against a two-phosphosite epitope of ATF2

Publication date: Available online 26 October 2017
Source:New Biotechnology
Author(s): Jennifer McGinnis, Brian K. Kay
Activating Transcription Factor 2 (ATF2) plays an important role in mammalian cell proliferation, apoptosis and DNA repair. Its activation is dependent on the sequential phosphorylation of residue threonine 71 (T71) followed by threonine 69 (T69) in its transactivation domain. While these modifications can be directed by a variety of kinases, the time to reach full phosphorylation is dependent on which signaling pathway has been activated, which is thought to be important for proper temporal regulation. To explore this phenomenon further, there have been ongoing efforts to generate affinity reagents for monitoring phosphorylation events in cellular assays. While phospho-specific antibodies have been valuable tools for monitoring cell signaling events, those raised against a peptide containing two or more adjacent phosphosites tend to cross-react with that peptide's various phospho-states, rendering such reagents unusable for studying sequential phosphorylation. As an alternative, we have employed the N-terminal Forkhead-associated 1 (FHA1) domain of yeast Rad53p as a scaffold to generate recombinant affinity reagents via phage display and were successful in generating a set of reagents that can distinguish between the dual-phosphorylated epitope, 63-IVADQpTPpTPTRFLK-77, and the mono-phosphorylated epitope, 63-IVADQpTPTPTRFLK-77, in the human ATF2 transactivation domain.



from # All Medicine by Alexandros G. Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2yP7uwL
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,

Αναζήτηση αυτού του ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader