AbstractNeural coding of the slow amplitude fluctuations of sound (i.e., temporal envelope) is thought to be essential for speech understanding; however, such coding by the human auditory nerve is poorly understood. Here, neural coding of the temporal envelope by the human auditory nerve is inferred from measurements of the compound action potential in response to an amplitude modulated carrier (CAPENV) for modulation frequencies ranging from 20 to 1000 Hz. The envelope following response (EFR) was measured simultaneously with CAPENV from active electrodes placed on the high forehead and tympanic membrane, respectively. Results support the hypothesis that phase locking to higher modulation frequencies (> 80 Hz) will be stronger for CAPENV, compared to EFR, consistent with the uppe...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,