Αρχειοθήκη ιστολογίου

Πέμπτη 10 Ιανουαρίου 2019

MicroRNA-501-3p restricts prostate cancer growth through regulating cell cycle-related and expression-elevated protein in tumor/cyclin D1 signaling.

Related Articles

MicroRNA-501-3p restricts prostate cancer growth through regulating cell cycle-related and expression-elevated protein in tumor/cyclin D1 signaling.

Biochem Biophys Res Commun. 2019 Jan 05;:

Authors: Zhang Z, Shao L, Wang Y, Luo X

Abstract
MicroRNA-501-3p (miR-501-3p) has been reported as a novel cancer-related miRNA in many types of cancer. However, the precise biological function of miR-501-3p in prostate cancer remains unknown. In this study, we aimed to investigate the regulatory effect and mechanism of miR-501-3p on cell growth of prostate cancer cells. We found that miR-501-3p expression was significantly downregulated in prostate cancer tissues and cell lines. Gain-of-function experiments showed that upregulation of miR-501-3p expression significantly decreased cell proliferation and colony formation, and induced cell cycle arrest in the G0/G1 phase. Bioinformatics analysis predicted that cell cycle-related and expression-elevated protein in tumor (CREPT) was a potential target gene of miR-501-3p., and the results of our luciferase reporter assay confirmed that miR-501-3p bound to the 3'-untranslated region of CREPT at the predicted binding site. Moreover, miR-501-3p was shown to negatively regulate CREPT expression in prostate cancer cells. Correlation analysis showed that miR-501-3p was inversely correlated with CREPT expression in prostate cancer tissues. Knockdown studies revealed that miR-501-3p regulated the expression of cyclin D1 by targeting CREPT. Additionally, the inhibitory effect of miR-501-3p on prostate cancer cell growth was partially reversed by CREPT overexpression. Overall, these results suggest that miR-501-3p restricts prostate cancer cell growth by targeting CREPT to inhibit the expression of cyclin D1. These findings indicate that the miR-501-3p/CREPT/cyclin D1 axis plays a crucial role in the progression of prostate cancer and may serve as potential therapeutic target.

PMID: 30621914 [PubMed - as supplied by publisher]



from A via a.sfakia on Inoreader http://bit.ly/2H3ZNe3

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,

Αναζήτηση αυτού του ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader