Lead‐free 2D perovskites: Using symmetrical imidazolium‐based cations, 2D tin perovskites with suitable band gaps and improved stability for solar cell applications could be obtained. Hole‐transport material (HTM)‐free devices show encouraging power conversion efficiencies measured under 1 sun illumination in ambient conditions.
Abstract
Organic‐inorganic hybrid perovskites have attracted great attention over the last few years as potential light‐harvesting materials for efficient and cost‐effective solar cells. However, the use of lead iodide in state‐of‐the‐art perovskite devices may demonstrate an obstacle for future commercialization due to toxicity of lead. Herein we report on the synthesis and characterization of low dimensional tin‐based perovskites. We found that the use of symmetrical imidazolium‐based cations such as benzimidazolium (Bn) and benzodiimidazolium (Bdi) allow the formation of 2D perovskites with relatively narrow band gaps compared to traditional ‐NH3+ amino groups, with optical band gap values of 1.81 eV and 1.79 eV for Bn2SnI4 and BdiSnI4 respectively. Furthermore, we demonstrate that the optical properties in this class of perovskites can be tuned by formation of a quasi 2D perovskite with the formula Bn2FASn2I7. Additionally, we investigate the change in band gap in the mixed Sn/Pb solid solution Bn2Snx Pbx−1I4. Devices fabricated with Bn2SnI4 show promising efficiencies of around 2.3 %.
from A via a.sfakia on Inoreader http://bit.ly/2Q39CYZ
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,