Birthweight is often used as a proxy for fetal weight. Problems with this practice have recently been brought to light. We explore whether data available at birth can be used to predict estimated fetal weight using linear and quantile regression, random forests, Bayesian additive regression trees, and generalized boosted models. We train and validate each approach using 18,517 pregnancies (31,948 ultrasound visits) from the Magee-Womens Obstetric Maternal and Infant data, and 240 pregnancies in a separate dataset of high-risk pregnancies. We also quantify the relation between smoking and small-for-gestational-age birth, defined as a birthweight in the lower 10th percentile of a population birthweight standard, and estimated and predicted fetal weight standard. Using mean squared error and median absolute deviation criteria, quantile regression performed best among the regression-based approaches, but generalized boosted models performed best overall. Using the birthweight standard, smoking during pregnancy increased the risk of small-for-gestational-age 3.84-fold (95% CI: 2.70, 5.47). This ratio dropped to 1.65 (95% CI: 1.50, 1.81) when using the correct fetal weight standard, which was no different from the machine learning-based predicted standards, but higher than the regression-based predicted standards. Machine learning algorithms show promise in recovering missing fetal weight information. Conflicts of Interest: None Acknowledgements: This research was supported in part by the University of Pittsburgh Center for Research Computing through the computing resources provided, and the assistance of Dr. Kim Wong. Code/Data Availability: All software coded needed to reproduce these analyses is available on http://ift.tt/2ierNw6 Sources of Funding: None *Correspondence: Department of Epidemiology, University of Pittsburgh, 130 DeSoto Street, 503 Parran Hall, Pittsburgh, PA 15261, ashley.naimi@pitt.edu, 412-624-7397 Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.
from ! ORL Sfakianakis via paythelady.61 on Inoreader http://ift.tt/2jHnNVg
via IFTTT
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Αρχειοθήκη ιστολογίου
-
►
2023
(272)
- ► Φεβρουαρίου (141)
- ► Ιανουαρίου (131)
-
►
2022
(2066)
- ► Δεκεμβρίου (80)
- ► Σεπτεμβρίου (170)
- ► Φεβρουαρίου (190)
- ► Ιανουαρίου (203)
-
►
2021
(7399)
- ► Δεκεμβρίου (186)
- ► Σεπτεμβρίου (472)
- ► Φεβρουαρίου (851)
-
►
2020
(2517)
- ► Δεκεμβρίου (792)
- ► Σεπτεμβρίου (21)
- ► Φεβρουαρίου (28)
-
►
2019
(12076)
- ► Δεκεμβρίου (19)
- ► Σεπτεμβρίου (54)
- ► Φεβρουαρίου (4765)
- ► Ιανουαρίου (5155)
-
►
2018
(3144)
- ► Δεκεμβρίου (3144)
-
▼
2017
(66935)
-
▼
Δεκεμβρίου
(1995)
-
▼
Δεκ 03
(11)
- How to Stop or Prevent Ceramic Braces from Staining
- Weekly Top Insider Buys Highlight for the Week of ...
- Mucositis in adult cancer patients reduced with ke...
- The applications of regenerative medicine in sinus...
- New year-round dentists opens in Leicester - and f...
- Officials Suspend License of Delaware Dentist, Nurse
- Machine Learning for Fetal Growth Prediction
- RAM of Virginia brings army of volunteers to Warsaw
- Outcomes after concomitant traumatic brain injury ...
- A.R. Chesson building new office for dental practice
- Lowell dentists irked by plan to take office land ...
-
▼
Δεκ 03
(11)
- ► Σεπτεμβρίου (12424)
-
▼
Δεκεμβρίου
(1995)
Ετικέτες
Πληροφορίες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Αναζήτηση αυτού του ιστολογίου
! # Ola via Alexandros G.Sfakianakis on Inoreader
-
Publication date: 1 May 2019 Source: Talanta, Volume 196 Author(s): Ruiqing Long, Te Li, Chaoying Tong, Lihui Wu, Shuyun Shi Abstract...
-
Oral Cancer Rapid Test Kit Market Rugged Expansion Foreseen by 2024 MilTech Oral cancer is one of the largest group of cancers ...
-
Related Articles SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,