Publication date: March 2018
Source:Calphad, Volume 60
Author(s): Axel van de Walle
The CALPHAD framework is built on assumption that all phases have a well-defined free energy over all accessible composition, temperature and pressure conditions. Unfortunately, it is common for phases to exhibit mechanical instabilities in at least some range of conditions, thus precluding direct experimental measurements and hindering computational efforts. A pragmatic solution has often been to extrapolate free energies from stable region into the unstable regions, but extrapolations from different systems that share a common phase may not agree and extrapolated free energies can unintentionally lie below the free energy of stable phases. Computational approaches that aim to directly calculate the free energy of unstable phases offer a promising avenue to address these issues. Among them, the recently proposed "inflection detection" scheme lies on a strong theoretical footing. We provide further support for this approach by demonstrating that it yield free energies that agree very well with the widely used SGTE (Scientific Group Thermodata Europe) data for pure elements. This finding suggest that it may be possible to get the best of both worlds: obtain a theoretically justified definition of the free energy of mechanically unstable phases and preserve much of existing empirical standards for the assignments of such free energies.
Graphical abstract
Highlights
fx1from ! ORL Sfakianakis via paythelady.61 on Inoreader http://ift.tt/2hulTdz
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,