Abstract
Diazotrophy is considered as one of the most crucial and dynamic phenomena in the rice field and also a major source of nitrogen input. The objective of this study was to elucidate possible interactions between diverse and dominant diazotrophic bacterial community and organic carbon composition of the paddy soil. Our results suggest that most abundantly found diazotrophs belong to a proteobacteria group and uncultured bacterial forms. A gene abundance study clearly showed significantly higher diazotrophic abundance (P < 0.01) at Chandauli (CHN) as compared to Varanasi (VNS) and Ghazipur (GHJ) districts of Eastern Uttar Pradesh, India, with nitrogenase reductase (nifH) copy number between 1.44 × 103 and 3.34 × 103 copy g−1 soil. Fourier-transform infrared (FT-IR) spectroscopy data identified –CO–, C=O ( \( {\mathrm{NH}}_{2^{-}} \) and –NH–), \( {\mathrm{CH}}_{2^{-}} \) , and OH– as dominant organic functional groups in the paddy soil. Multivariate analysis was performed to get a clear and more accurate picture of interactions between free-living diazotrophs and abiotic soil factors. Regression analysis suggested a similar trend of distribution of different functional groups along each site. Relative abundance and diversity of diazotrophic population increased in response to FT-IR-based soil organic fractions. Maximum number of FT-IR spectral peak at sites in the Chandauli district augmented its bacterial diazotrophic diversity and abundance. Taken together, the present study sheds light on the substrate-driven composition of the microbial population of selected paddy areas.
from # All Medicine by Alexandros G. Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2kTlZMJ
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,