Abstract
Fluctuations in gray and white matter volumes in addition to the fibers' reorganization and refinement of synaptic connectivity apparently happen in a particular temporo-spatial sequence during the dynamic and prolonged process of cerebral maturation. These developmental events are associated with regional modifications of brain tissues and neural circuits, contributing to networks' specialization and enhanced cognitive processing. According to several studies, improvements in cognitive processes are possibly myelin-dependent and associated to white matter maturation. Of particular interest is the developmental pattern of the prefrontal cortex (PFC), more specifically the PFC white matter, due to its role in high-level executive processes such as attention, working memory and inhibitory control. A systematic review of the literature was conducted using the Web of Science, PubMed and Embase databases to analyze the development of PFC white matter using Diffusion Tensor Imaging (DTI), a widely used non-invasive technique to assess white matter maturation. Both the research and reporting of results were based on Cochrane's recommendations and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Information extracted from 27 published studies revealed an increased myelination, organization and integrity of frontal white matter with age, as revealed by DTI indexes (fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD] and axial diffusivity [AD]). These patterns highlight the extended developmental course of the frontal structural connectivity, which parallels the improvements in higher-level cognitive functions observed between adolescence and early adulthood.
from # All Medicine by Alexandros G. Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2y2tRNA
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,