Αρχειοθήκη ιστολογίου

Παρασκευή 18 Αυγούστου 2017

MicroRNA-21 suppresses ox-LDL-induced human aortic endothelial cells injuries in atherosclerosis through enhancement of autophagic flux: involvement in promotion of lysosomal function

S00144827.gif

Publication date: Available online 18 August 2017
Source:Experimental Cell Research
Author(s): Feng Tang, Tian-Lun Yang, Zhen Zhang, Xiao-Gang Li, Qiao-Qing Zhong, Ting-Ting Zhao, Li Gong
Atherosclerosis is a common pathological basis of cardiovascular disease and remains the leading cause of mortality. Endothelial cell (EC) injury and autophagy dysfunction have been proved to contribute to the development of atherosclerosis. Recently, accumulating evidence confirms that microRNAs (miRNAs) have emerged as vital regulators and fine-tuners of various pathophysiological cellular impacts and molecular signaling pathways involvedin atherosclerosis. Herein, the objective of the present study was to explore the biological function of miR-21 in oxidized low-density lipoprotein (ox-LDL)-induced human aortic endothelial cells (HAECs) injury and the underlying molecular mechanism. The results showed that ox-LDL treatment significantly decreased HAECs viability, increased caspase-3 activity, apoptosis ratio and Bax protein expression, and reduced Bcl-2 protein expressionresulting in EC injuries. Simultaneously, ox-LDL treatment obviously reduced miR-21 level in a time-and dose-dependent manner. Notably, ox-LDL-induced EC injuries were abolished by miR-21 mimics transfection. In addition, miR-21 mimics alleviated ox-LDL-induced impaired autophagic flux as illustrated by the increases in LC3-II/LC3-I ratio and Beclin-1 protein expression, and the decrease in p62 protein expression in HAECs. Moreover, ox-LDL suppressed the expressions of lysosomal membrane protein (LAMP1) and cathepsin D proteins, and attenuated cathepsin D activity in HAECs, leading to lysosomal dysfunction, while these effects were also blocked by miR-21 mimics. These findings indicated that miR-21 restored impaired autophagic flux and lysosomal dysfunction, thereby attenuating ox-LDL-induced HAECs injuries.



from # All Medicine by Alexandros G. Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2wZz4pF
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,

Αναζήτηση αυτού του ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader