Αρχειοθήκη ιστολογίου

Δευτέρα 7 Αυγούστου 2017

Design, Modeling, and Analysis of a Novel Hydraulic Energy-Regenerative Shock Absorber for Vehicle Suspension

To reduce energy consumption or improve energy efficiency, the regenerative devices recently have drawn the public's eyes. In this paper, a novel hydraulic energy-regenerative shock absorber (HERSA) is developed for vehicle suspension to regenerate the vibration energy which is dissipated by conventional viscous dampers into heat waste. At first, the schematic of HERSA is presented and a mathematic model is developed to describe the characteristic of HERSA. Then the parametric sensitivity analysis of the vibration energy is expounded, and the ranking of their influences is . Besides, a parametric study of HERSA is adopted to research the influences of the key parameters on the characteristic of HERSA. Moreover, an optimization of HERSA is carried out to regenerate more power as far as possible without devitalizing the damping characteristic. To make the optimization results more close to the actual condition, the displacement data of the shock absorber in the road test is selected as the excitation in the optimization. The results show that the RMS of regenerated energy is up to 107.94 W under the actual excitation. Moreover it indicates that the HERSA can improve its performance through the damping control.

from # All Medicine by Alexandros G. Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2vyLs2p
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,

Αναζήτηση αυτού του ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader