Publication date: October 2017
Source:Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Volume 1864, Issue 10
Author(s): Ildikó Kristó, Csaba Bajusz, Barbara N. Borsos, Tibor Pankotai, Joseph Dopie, Ferenc Jankovics, Maria K. Vartiainen, Miklós Erdélyi, Péter Vilmos
Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export.
Graphical abstract
from # All Medicine by Alexandros G. Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2u2KsCw
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,