Αρχειοθήκη ιστολογίου

Παρασκευή 14 Ιουλίου 2017

A pH Dependent Switch Promotes {beta}-Synuclein Fibril Formation via Glutamate Residues [Molecular Bases of Disease]

Alpha-synuclein (αS) is the primary protein associated with Parkinson's disease, and undergoes aggregation from its intrinsically disordered monomeric form to a cross-β fibrillar form. The closely related homolog beta-synuclein (βS) is essentially fibril resistant under cytoplasmic physiological conditions. Toxic gain of function by βS has been linked to dysfunction, but the aggregation behavior of βS under altered pH is not well understood. In this work, we compare fibril formation of αS and βS at pH 7.3 and mildly acidic pH 5.8, and demonstrate that pH serves as an on/off switch for βS fibrillation. Using αS/βS domain-swapped chimera constructs and single residue substitutions in βS, we localize the switch to acidic residues in the N-terminal and NAC (non-amyloid component) domains of βS. Computational models of βS fibril structures indicate that key glutamate residues (E31, E61) in these domains may be sites of pH-sensitive interactions, and variants E31A and E61A show dramatically altered pH-sensitivity for fibril formation supporting the importance of these charged sidechains in fibril formation of βS. Our results demonstrate that relatively small changes in pH, which occur frequently in the cytoplasm and in secretory pathways, may induce the formation of βS fibrils and suggest a complex role for βS in synuclein cellular homeostasis and Parkinson's disease.

from # All Medicine by Alexandros G. Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2uoKcNY
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,

Αναζήτηση αυτού του ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader