Αρχειοθήκη ιστολογίου

Δευτέρα 4 Φεβρουαρίου 2019

Controls on Sediment Suspension, Flux, and Marsh Deposition near a Bay-Marsh Boundary

Abstract

The sustainability of marshes adjacent to coastal bays is driven by the exchange of sediment across the marsh-bay boundary, where edge erosion commonly leads to lateral marsh loss and enhanced vertical accretion. The timing and patterns of sediment deposition on salt marshes adjacent to larger bodies of water such as coastal bays, however, differ from those on better-studied tidal creek marshes primarily owing to the importance of wind-waves. We combined field measurements and modeling to examine controls on suspended sediment concentrations and fluxes on a tidal flat (tidal range of 1.2 m) and rates of sediment deposition on the adjacent marsh at a site on the Eastern Shore of Virginia. Suspended sediment concentrations over tidal flats were strongly controlled by waves. Yet, storm winds sufficient to drive large resuspension events often coincided with peak tidal elevations that were too low to flood the marsh, which was oriented away from the wind directions most favorable for storm surge, thereby restricting storm-driven, episodic sediment delivery to the marsh. Winds also drove wide variability in the direction of surface currents near the marsh edge when water depths were high enough to flood the marsh. Nevertheless, our results show that sediment in the upper water column over the tidal flat was effectively transported across the marsh edge during flooding tides. A sediment deposition model developed to investigate the combined effects of vegetation and wave action on depositional patterns predicted that waves displace maximum deposition inland from the marsh edge, consistent with measured deposition at the study site. Marsh deposition was sensitive to inundation frequency as well as the concentration of sediment in water flooding the marsh, underscoring the importance of nontidal controls on water surface elevation, such as meteorological effects (e.g., storm surge) and sea level rise. Whereas short-term increases in marsh inundation enhance deposition, sea level rise that results in deeper average water depths over the tidal flats decreases deposition if marsh elevation is rising in step with sea level.



from Energy Ecology Environment Ambio via Terpsi Hori on Inoreader http://bit.ly/2GpA9yj

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,

Αναζήτηση αυτού του ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader