Αρχειοθήκη ιστολογίου

Δευτέρα 23 Οκτωβρίου 2017

A Tutorial Review on Multi-subject Decomposition of EEG

Abstract

Over the last years we saw a steady increase in the relevance of big neuroscience data sets, and with it grew the need for analysis tools capable of handling such large data sets while simultaneously extracting properties of brain activity that generalize across subjects. For functional magnetic resonance imaging, multi-subject or group-level independent component analysis provided a data-driven approach to extract intrinsic functional networks, such as the default mode network. Meanwhile, this methodological framework has been adapted for the analysis of electroencephalography (EEG) data. Here, we provide an overview of the currently available approaches for multi-subject data decomposition as applied to EEG, and highlight the characteristics of EEG that warrant special consideration. We further illustrate the importance of matching one's choice of method to the data characteristics at hand by guiding the reader through a set of simulations. In sum, algorithms for group-level decomposition of EEG provide an innovative and powerful tool to study the richness of functional brain networks in multi-subject EEG data sets.



from # All Medicine by Alexandros G. Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2i1KhiU
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,

Αναζήτηση αυτού του ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader