Αρχειοθήκη ιστολογίου

Πέμπτη 31 Ιανουαρίου 2019

In Situ Generation of an N‐Heterocyclic Carbene Functionalized Metal–Organic Framework by Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO2

Angewandte Chemie International Edition In Situ Generation of an N‐Heterocyclic Carbene Functionalized Metal–Organic Framework by Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO2

CO2 fixation: A metal–organic framework (MOF), containing metal‐free N‐heterocyclic carbene moieties, performs quantitative hydrogen transfer from silanes to CO2 to obtain CH3OH under ambient conditions. In addition, the MOF‐immobilized NHC catalyst shows enhanced stability for up to eight cycles without base activation, as well as high selectivity towards the desired silyl methoxide product.


Abstract

The reported metal–organic framework (MOF) catalyst realizes CO2 to methanol transformation under ambient conditions. The MOF is one rare example containing metal‐free N‐heterocyclic carbene (NHC) moieties, which are installed using an in situ generation strategy involving the incorporation of an imidazolium bromide based linker into the MOF by postsynthetic ligand exchange. Importantly, the resultant NHC‐functionalized MOF is the first catalyst capable of performing quantitative hydrogen transfer from silanes to CO2, thus achieving quantitative (>99 %) methanol yield. Density‐functional theory calculations indicate the high catalytic activity of the NHC sites in MOFs are attributed to the decreased reaction barrier of a reaction route involving the formation of an NHC‐silane adduct. In addition, the MOF‐immobilized NHC catalyst shows enhanced stability for up to eight cycles without base activation, as well as high selectivity towards the desired silyl methoxide product.



from A via a.sfakia on Inoreader http://bit.ly/2GWaM9m

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,

Αναζήτηση αυτού του ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader