Τετάρτη 30 Ιανουαρίου 2019

A promising voltammetric biosensor based on glutamate dehydrogenase/Fe3O4/graphene/chitosan nanobiocomposite for sensitive ammonium determination in PM2.5

Publication date: 15 May 2019

Source: Talanta, Volume 197

Author(s): Liangyun Yu, Qi Zhang, Dangqin Jin, Qin Xu, Xiaoya Hu

Abstract

A novel NH4+ voltammetric electrochemical biosensor was constructed by immobilizing glutamate dehydrogenase (GLDH)/Fe3O4/graphene (GR)/chitosan (CS) nanobiocomposite onto a glassy carbon electrode (GCE). On the GLDH/Fe3O4/GR/CS/GCE, GLDH catalyzed the reversible reaction, i.e., the reductive amination of α-ketoglutaric acid and the oxidative deamination of L-glutamate. The electrons produced in the enzymatic reactions were transferred to the surface of the electrode via the [Fe(CN)6]3−/4− couple, which helped for the amplification of the electrochemical signal. The electrochemical detection of NH4+ was based on the fact that the enhanced response current was proportional to the NH4+ concentration. Owing to the combination of the advantages of the synergistic effects of Fe3O4 nanospheres, GR and CS, a promising platform for NH4+ sensing was provided. Under optimum conditions, the introduced biosensor had a linear range of 0.4–2.0 μM for NH4+ with the detection and quantification limits of 0.08 and 0.27 μM, respectively. Moreover, the biosensor exhibited good sensitivity and excellent reproducibility. It could retain 91.8% of its original response after two weeks of storage at 4 °C, suggesting satisfactory stability. Additionally, the proposed biosensor was successfully applied to detect NH4+ levels in PM2.5 samples, indicating its feasibility for application in NH4+monitoring in the environmental fields.

Graphical abstract

fx1



from A via a.sfakia on Inoreader http://bit.ly/2SgWC75

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,