We study the energy harvesting problem in the Internet of Things with heterogeneous users, where there are three types of single-antenna users: ID users that only receive information, EH users that can only receive energy, and ID/EH users that receive information and energy simultaneously from a multiantenna base station via power splitting. We aim to maximize the minimum signal-to-interference-plus-noise ratio (SINR) of the ID users and ID/EH users by jointly designing the power allocation at the transmitter and the power splitting strategy at the ID/EH receivers under the maximum transmit power and the minimum energy harvesting constraints. Specifically, we first apply the semidefinite relaxation (SDR), zero-forcing (ZF), and maximum ratio transmission (MRT) techniques to solve the nonconvex problems. We then apply the zero-forcing dirty paper coding (ZF-DPC) technique to eliminate the multiuser interference and derive the closed-form optimal solution. Numerical results show that ZF-DPC provides higher achievable minimum SINR than SDR and ZF in most cases.
from # All Medicine by Alexandros G. Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2uILG5C
via IFTTT
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
▼
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,